Composable Deep Reinforcement Learning for Robotic Manipulation
نویسندگان
چکیده
Model-free deep reinforcement learning has been shown to exhibit good performance in domains ranging from video games to simulated robotic manipulation and locomotion. However, model-free methods are known to perform poorly when the interaction time with the environment is limited, as is the case for most real-world robotic tasks. In this paper, we study how maximum entropy policies trained using soft Q-learning can be applied to real-world robotic manipulation. The application of this method to real-world manipulation is facilitated by two important features of soft Q-learning. First, soft Q-learning can learn multimodal exploration strategies by learning policies represented by expressive energy-based models. Second, we show that policies learned with soft Q-learning can be composed to create new policies, and that the optimality of the resulting policy can be bounded in terms of the divergence between the composed policies. This compositionality provides an especially valuable tool for real-world manipulation, where constructing new policies by composing existing skills can provide a large gain in efficiency over training from scratch. Our experimental evaluation demonstrates that soft Q-learning is substantially more sample efficient than prior model-free deep reinforcement learning methods, and that compositionality can be performed for both simulated and real-world tasks.
منابع مشابه
Deep Reinforcement Learning for Robotic Manipulation
Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered ...
متن کاملDeep Reinforcement Learning for Robotic Manipulation - The state of the art
The focus of this work is to enumerate the various approaches and algorithms that center around application of reinforcement learning in robotic manipulation tasks. Earlier methods utilized specialized policy representations and human demonstrations to constrict the policy. Such methods worked well with continuous state and policy space of robots but failed to come up with generalized policies....
متن کاملLearning Visual Feature Spaces for Robotic Manipulation with Deep Spatial Autoencoders
Reinforcement learning provides a powerful and flexible framework for automated acquisition of robotic motion skills. However, applying reinforcement learning requires a sufficiently detailed representation of the state, including the configuration of task-relevant objects. We present an approach that automates state-space construction by learning a state representation directly from camera ima...
متن کاملDeep Reinforcement Learning for Vision-Based Robotic Grasping: A Simulated Comparative Evaluation of Off-Policy Methods
In this paper, we explore deep reinforcement learning algorithms for vision-based robotic grasping. Modelfree deep reinforcement learning (RL) has been successfully applied to a range of challenging environments, but the proliferation of algorithms makes it difficult to discern which particular approach would be best suited for a rich, diverse task like grasping. To answer this question, we pro...
متن کاملReinforcement Learning for Appearance Based Visual Servoing in Robotic Manipulation
The objective of this paper is to develop a new appearance based visual servoing method that needs no prior structuring of the environment and also eliminates the correspondence problem associated with conventional visual servoing methods. Detailed description of object appearance and its generation are provided in this paper. In addition, owing to the non-linear and high dimensional nature of ...
متن کامل